EVALUATING THE HEAT PROOFING PROPERTIES
OF ANISOTROPIC INSULATION
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The thermal resistance of vacuum-shield insulation is evaluated on the basis of earlier test
data [1] on the anisotropy of heat conduction through it,

The data in [1] indicate a very pronounced anisotropy of heat conduction through a vacuum-shield
thermal insulation along and across its layers. For this reason, an evaluation of the thermal resistance
of such an insulation must take into account this anisotropy as well as the specific structural conditions
umder which it is used.

We will consider the case of steady-state heat transmission through a flat layer of anisotropic
vacuum-shield insulation with heat transfer at its end surfaces. This case is typical of many practical
structural designs involving the installation of vacuum-shield insulation,

The schematic diagram in Fig. 1 shows the transverse section through a flat layer of anisotropic
insulation having the shape of an infinitely long prism., The heat transfer at the end surfaces is defined
by boundary conditions of the third kind.

Let the constant thermal conductivities along the x- and y-axis be Ax and A, respectively, and the
temperature of the insulation be T. The differential equation of heat conduction in this case will be
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Eq. (1) becomes
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Fig. 1, Schematic diagram for calculating the heat

transfer in laminated insulation.

We introduce the following notation:
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Then the boundary conditions can be rewritten as
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The solution will be sought in the form
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with T, corresponding to a one-dimensional temperature field (disregarding the heat transfer at the end

surface of the specimen).
If we let Ty = Cy + Cyn, then the boundary conditions will yield

R R,

C, = ?y (T, —Cy—Ci); C, = RJ

1 2

from where

(Co—Ty),

R,
Co_Tz = “2—2 (T; _Co)_ FI (C0~—T.,_).
1 1

We add the follow ing notation:
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so that
Co

l
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We will seek function f which is harmonic within the rectangle ABCD:
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with p, defined by the transcendental equation
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which follows from a simultaneous solution of (4), (5), and (8). From the same equations we also obtain
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On the basis of (8) and (10), we can express f as
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Inserting solution (11) into the boundary conditions (6) and (7), we find
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In order to determine coefficients A;l and AI';, we expand the right-hand sides of Eqgs. (13) and (14) into
series in terms of eigenfunctions S () of the Sturm—Liouville boundary-value problem corresponding to
the boundary conditions (4) and (5).

Finally, we have
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The thermal flux density on a strip of mit width along segment AB (y = 0) is q = @,[T(£, 0)-T,;]. We will
express it as a sum q = gy + ¢ of the thermal flux corresponding to a one-dimensional temperature field
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and an additional thermal flux due to heat transfer at the end surfaces
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The total thermal flux on a strip of unit width along AB (y = 0) is
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where @ = qya is the total thermal flux on a strip of unit width in a one-dimensional temperature field,
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and Q is the additional thermal flux due to heat transfer at the end surfaces.

Analogously,
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where Q, is the total thermal flux on a strip of unit width along BC (at the x =a-end).

Of practical interest is the edge effect Q* in an insulation with an infinitely long x-dimension (i.e.,
when a/bV k— =). After a few transformations, we have
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Fig. 2. Heat transmission through the insulation, as a
function of the insulation parameters. a: Bi =20, BIi'
=10; 1) k=1; 2) 10; 3) 100; 4) 1000; 5) 10,000; b: 1) k
=1; 3) 100; 5) 10,000. Solid curves calculated accord-
ing to formula (18); dashed curves calculated according
to formula (20).
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Fig. 3. Heat transmission through the insulation, as
a function of the insulation parameters, with Bi =100
and Bi' =50, a: 1) k = 1; 2) 100; 3) 10,000, Solid lines
represent (Q + Q,)/Q,; dashed lines represent Q,/ Qy;
b: 2) k =100; 3) 10,000.
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The analytical solutions (18), (19), and (20) are shown graphically in Figs. 2 and 3, where the results of
calculations on a digital computer are given in critical form. The graphs represent relations for the re-
ferred thermal flux Q in terms of Q;/ @y, (Q + Q,)/Qp, (Q + @ + Qk/(Q + Q, + Qpk = as functions of
k =Ay/Ay, N =a/bVk or a/b, at constant values of Bi = Ry/Ry and Bi' = Ry/R,.

The dimensionless ratio Q;/Q, characterizes the effect of heat transfer at the end surfaces on the
thermal flux on the insulation surface along the segment AB, Q,/Q, characterizes the thermal flux on the
end surfaces of the insulation (segment BC), (Q + Q,)/Q, characterizes the effect of heat transfer at the
end surfaces on the total heat transmitted through the insulation, and (@ + Qq + Q))/(Q) + @ + Qy)k =1
characterizes the effect of the anisotropy of the insulation on the heat transmitted through the insulation,

The calculated results indicate that the additional thermal fluxes at the end surfaces of an anisotropic
insulation may reduce the insulation effectiveness to a fraction. This, in turn, indicates the need for spec-
ial designs which would limlt the heat transfer at the end surfaces when anisotropic laminated thermal in-
sulation is used.

NOTATION
T is the temperature;
T,, Ty are the ambienttemperatures at the boundaries of the insulation layer;
X,y are the coordinates;
a,b are the linear dimensions of the insulation layer;
Qy, 0, are the coefficients of heat transfer at the boundaries of the insulation layer;

dg, 9, Qy  are the thermal flux densities on the inner boundaries (AB and BC) of the insulation layer.
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